
Phoenix-RTOS – the next
generation operating system for

Internet of Things

Phoenix Systems

Why Phoenix-RTOS?

Computing	power	and	resources	of	commodity	
microcontrollers	reach	level	adequate	for	complex	
applications	

	

Due	to	processing	power	most	of	functionalities	can	be	
implemented	in	software	
	

Software	defined	solutions	dramatically	simplify	the	
process	of	implementation	of	new	IoT	devices	
	

Complex	software	inevitably	calls	for	operating	system	
capable	to	create	its	operation	environment	

Market analysis	

There	is	a	great	demand	for	an	efficient	operating	system	for	IoT	that	simplifies	the	embedded	
software	development	process	
	

Manufacturers	finally	understand	the	need	to	use	the	operating	system	as	a	device	basis	

	

Popular	operating	systems	for	PCs	are	not	compliant	with	IoT	devices	(too	big	hardware	
requirements,	no	real-time,	low	modularity	and	scalability)		
	

Operating	systems	for	IoT	-	the	competition	(Contiki,	WindRiver	Rocket,	Zephyr,	FreeRTOS):	

–  too	simple	application	environment,	

–  limitations	in	memory	size,	number	of	threads	and	processes,	

–  no	device	drivers,	

–  no	IoT	communication	stacks.	

Phoenix-RTOS	-	introduction	

Phoenix-RTOS (1)

State-of-the-art	advanced	microkernel-based	real-time	operating	system	for	IoT	
	

Foundation	for	software	defined	solutions	

	

Support	for	next	generation	microcontrollers	(ARM	Cortex-M7,	RISC-V)	

	

Extreme	scalability	and	modularity	

Phoenix-RTOS (2)

Hardware	architectures	
IA32,	ARMv7,	ARM,RISC-V,		eSi-RISC	

	

Object-based	memory	management	

support	for	MMU	and	non-MMU	architectures	

memory	size	from	32	KB	to	264	KB	

	

Communication	stacks	

TCP/IP	

PLC:	Phoenix-PRIME,	Phoenix-G3	(Cenelec,	FCC)	

wireless:	802.15.4,	802.15.4g,	Wireless	M-Bus	

	

Optimized	standard	C	library	(libphoenix)	with	POSIX	extensions	

Phoenix-RTOS – timeline
Phoenix	(1999)	-	prototype	

–  IA32	

–  dedicated	standard	library	and	simple	tools	

	

Phoenix-RTOS	2	(2004)	
–  IA32,	ARM,	eSI-RISC	

–  monolithic	kernel	(200K	LoC),	(300-600)K	binary	image	

–  Phoenix-PRIME	

–  newlib,	busybox,	libmeter,	libcosem,	UN*X	applicaMons	

	

Phoenix-RTOS	3	(2017)	
–  IA32,	ARM,	ARMv7,	RISC-V,	eSI-RISC	(mulMcore)	

–  microkernel	(20K	LoC),	(30-100)K	binary	image	

–  Phoenix-PRIME,	Phoenix-G3,	Phoenix-802.15.4,	Phoenix-WMBUS	

–  new	memory	management	system	(objects,	MMU,	non-MMU)	

–  libphoenix,	libmeter,	libcosem	

–  busybox,	UN*X	applicaMons	

	

Phoenix-RTOS – applications

Phoenix-RTOS – programmer perspective (1)

Advanced	application	environment	maintaining	small	operating	system	size		
(100	KB	code+	20	KB	data)	
	

Real-time	capabilities	(low	latency	and	jitter)	

	

Modular	and	scalable	architecture	(microkernel	based)	

	

Software	defined	communication	stacks	(e.g.	PLC	PRIME,	G3-PLC)	constituting	operating	
system`s	modules	

	

Support	for	battery	devices	keeping	the	synchronous	application	interface	

	

Application	frameworks	simplifying	development	of	IoT	applications	(Smart	Grid)	

Phoenix-RTOS – programmer perspective (2)

Support	for	numerous	devices	(drivers)	
	

Support	for	numerous	filesystems	

	

Software	libraries	for	Smart	Grid	(libmeter,	libcosem)	

	

Popular	tools	for	software	development	(GNU	CC)	

	

Phoenix-RTOS – microkernel architecture

Phoenix-RTOS – versions

Na$ve	(ANSI	C	+	ext.)	–	80KB	 POSIX	-	200KB	 ARINC	653		

drones	
avionics	

	
(under	development)	

data	concentrators	
devices	with	advanced	funcMonality	

smart	meters	
low-power	devices	

First	implementations	

Phoenix-RTOS 2 – first implementations

Phoenix-PRIME	
board	

Andra	DCU	

Phoenix-RTOS – appliances (1)

Andra	comander	amiDC-3	(Poland)	
	
PRIME	DCU	and	balancing	meter	
	
PRIME	Alliance	cerMfied	BN	
	
Energa-Operator	network	implementaMon	
	
QuanMty:	30K	
	
Implemented	10K,	20K	in	producMon	

Phoenix-RTOS – appliances (2)

Saiman	SDM	1,	SDM	3	(Kazakchstan)	
	
So`ware	defined	smart	energy	meter	(PLC	PRIME),	
class	0.5	
	
USB	interface	
	
ImplementaMon	in	Almaty	power	grid	network	
	
QuanMty:	200K	
	
Short	manufacturing	series	tests	in	progress	(150	
meters)	

Phoenix-RTOS – appliances (3)

Phoenix-RTOS – appliances (4)

Phoenix-RTOS – appliances (5)

Apator-Metrix	iSMART1	(Italy)	
	
So`ware	defined	smart	gas	meter	(cerMfied)	
	
W-Mbus,	ZigBee	interfaces	
	
QuanMty:	2M	
	
Targeted	also	for	other	markets	due	to	high	
modularity	

Phoenix-RTOS – appliances (6)

Incotex	DCU	(Russia)	
	
DCU	and	balancing	meter	(PLC	PRIME,	G3-PLC)	
	
Fulfilling	requirements	for	Russian	market	
	
QuanMty:	60K	
	
Targeted	also	for	other	markets	in	Asia	and	Middle	
East	

NXP iMX.RT – next generation microcontroller

State-of-the-art	microcontroller	designed	in	40nm	
architecture,	ARM	Cortex-M7	
	

600	MHz,	512	KB	memory,	advanced	peripheral	devices	
	
Various	operating	modes,	up	to	180	mW	power	
consumption	

	
Est.	price	2.6	USD	
	

Ideal	for	software	defined	solutions	
	
Phoenix-RTOS	promoted	as	the	operating	system,	
premiered	during	EUW’17	in	Amsterdam	

Phoenix-RTOS	microkernel	

Kernel	initialization	

Definition	of	basic	types	

Definition	of	syspage_t	structure	

Spinlocks	

Kernel	console	

String	functions	(memcpy,	memset)	

Low-level	interrupts	and	exceptions	handling	

MMU	and	MPU	handlings	

Clock	support	(for	scheduling)	

Context	definition	and	switching	

Hardware Abstraction Layer

Support	for	MMU	and	non-MMU	architectures	

Memory	virtualization	

Memory	protection	

Many	layers	of	memory	allocation	

Memory	objects	

	

Memory management (1)

Memory management (2)

Process and thread management (1)

Multicore	support	
	

Preemptive	scheduling	

	

Threads	and	processes	(ELF)	

	

Message	passing	

–  data	copying	

–  virtual	memory	entries	passing	

Kernel	level	synchronization	
–  spinlocks	

–  locks	with	priority	inheritance	

	

User	level	synchronization	

–  mutexes	

–  conditional	variables	

–  semaphores	

Phoenix-RTOS – process management (2)

Synchronous	message	passing	
–  msgSend(),	msgRecv(),	msgRespond()

Asynchronous	message	passing	

–  msgPulse(),	msgRecv()

Naming	services	

–  register()	, lookup()

Based	on	virtual	memory	and	memory	sharing	(data	copying	reduction)	

Phoenix-RTOS – inter-process communication

Phoenix-RTOS	user-space	

libphoenix	
–  standard	C	library	&	specific	system	functions	

–  available	on	github.com/phoenix-rtos/libphoenix	

–  POSIX	mode	

libmeter	

–  library	for		measurement	of	electric	energy	

libcosem	

–  DLMS/COSEM	library		

Phoenix-RTOS – libraries

Device drivers

Available	classes	
adc 	 	 	 	multi	(multi	drivers) 	 	storage	

display 	 	 	net 	 	 	 	 	tty	

dma 	 	 	 	pseudo 	 	 	 	usb	

esai 	 	 	 	rtc 	 	 	 	 	watchdog	

gpio 	 	 	 	security 	 	 	 	..	

i2c 	 	 	 	spi 	 	 	 		

Implemented	as	user	level	services	(application	servers	handling	interrupts)	

	

Multi	drivers	support	devices	embedded	into	microcontrollers	and	optimize	resource	usage	

(e.g.	on	STM32	family)	

	

Available	on	github.com/phoenix-rtos/phoenix-rtos-devices	

Available	file	servers	
–  dummyfs	 	-	RAM	and	initial	fileystems	

–  FAT	 	 	-		FAT12,	FAT16,	FAT32	

–  ext2	 	 	-	GNU/Linux	filesystem	for	block	devices	

–  JFFS2		 	-	filesystem	for	NOR	and	NAND	

–  meterfs	 	-	proprietary	filesystem	for	Flash	(minimal	requirements)	

Implemented	as	user	level	services	(storage	device	drivers)	

	

Available	on	github.com/phoenix-rtos/phoenix-rtos-filesystems	

Phoenix-RTOS – filesystems

Communication	stacks	

TCP/IP	
	open	network	stack	
	available	on	github.com/phoenix-rtos/phoenix-rtos-net/)	

Phoenix-PRIME	
PRIME	1.3.6	
PRIME	1.4	

Phoenix-G3	
available	in	2018	

	
Phoenix-	802.15.4	

available	in	2019	
802.15.4,	802.15.4g	
ZigBee	and	WiSun	

	
Phoenix-WMBUS	

Communication stacks

Software-defined PLC (e.g. PRIME)

Software	defined	PowerLine	Communication	is	based	on	digital	signal	processing	using	in-
CPU	ADC/DAC	converters	and	Phoenix-RTOS	real-time	capabilities	
	
Sample	PRIME	signal	(frame)	is	presented	below	
	

How	to	use?	

 Running on IA32 emulator

qemu-system-i386 -kernel ../../phoenix-rtos-kernel/phoenix-ia32-qemu.elf \
 -serial stdio \
 -m 1 \
 -initrd "../../phoenix-rtos-devices/tty/pc-uart/pc-uart,../../libphoenix/test/psh”

Phoenix-RTOS microkernel v. 2.71
hal: GenuineIntel Family 6 Model 6 Stepping 3 (4/4)
hal: +fpu+de+pse+tsc+msr+pae+apic+pge+cmov+pat
vm: Initializing page allocator (172+324)/960KB, page_t=16
vm: [32.][24K]SYPPCKKKP[5A][12.][5A][72.]B[80x][16B][1048256x][64B]
vm: Initializing memory mapper: (58*52) 3016
vm: Initializing kernel memory allocator: (64*48) 3072
vm: Initializing memory objects
proc: Initializing thread scheduler, priorities=8
syscalls: Initializing syscall table [39]
main: Starting syspage programs (2) and init
pc-uart: Initializing UART 16550 driver
pc-uart: Detected interface on 0x3f8 irq=4
(psh)%

kernel	

driver	 pre-init	program	

www.phoenix-rtos.com	

